Ultra-long zinc oxide nanowires and boron doping based on ionic liquid assisted thermal chemical vapor deposition growth.

نویسندگان

  • Andreas Menzel
  • Kris Komin
  • Yang Yang
  • Firat Güder
  • Vanessa Trouillet
  • Peter Werner
  • Margit Zacharias
چکیده

Ionic liquid assisted growth of ultra-long ZnO nanowires from thermal chemical vapor deposition and the incorporation of dopants into the ZnO lattice have been investigated. We find that decomposed components of the ionic liquid at higher temperatures facilitate ultra-long vapor-liquid-solid ZnO nanowires that exhibit an unusual a-axis orientation. In particular, the ionic liquid BMImBF4 has been studied and the mechanism of the nanowire growth model in response to the use of the ionic liquid has been explained. We show that boron which is part of the investigated ionic liquid incorporates into the ZnO lattice and serves as a donor source. Electrical measurements were conducted and have shown an enhanced electrical conductivity (ρ = 0.09 Ω cm) when using the ionic liquid assisted growth approach. This work represents a step towards the controlled doping for designing future nanowire devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical Vapor Deposition Synthesis of Novel Indium Oxide Nanostructures in Strongly Reducing Growth Ambient

The current study reports some interesting growth of novel In2O3 nanostructures using ambient-controlled chemical vapor deposition technique in the presence of a strongly reducing hydrazine ambient. The experiments are systematically carried out by keeping either of the carrier gas flow rate or the source temperature constant, and varying the other. For each of the depositions, the growth is st...

متن کامل

Growth of CrO [ subscript 2 ] coated single crystalline ( SnO [ subscript 2 ] ) tin oxide nanowires

Single crystalline tin oxide (SnO2) nanowires have been synthesized by carbothermal reduction of SnO2 nanopowder followed by thermal evaporation of the reduced precursor and growth via the vapor-liquid-solid (VLS) growth mechanism. The nanowires are deposited on single crystalline TiO2 substrates of orientations of (100) and (110) that are coated with a thin film and colloids of gold (Au) catal...

متن کامل

Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview

Strategies for the enhancement of gas sensing properties, and specifically the improvement of gas selectivity of metal oxide semiconductor nanowire (NW) networks grown by chemical vapor deposition and thermal evaporation, are reviewed. Highly crystalline NWs grown by vapor-phase routes have various advantages, and thus have been applied in the field of gas sensors over the years. In particular,...

متن کامل

Effect of pressure and Al doping on structural and optical properties of ZnO nanowires synthesized by chemical vapor deposition

The effect of Al doping concentration and oxygen ambient pressure on the structural and optical properties of chemical vapor deposition-grown, Al-doped ZnO nanowires is studied. As Al doping increases, the strength of the broad visible emission band decreases and the UV emission increases, but the growth rate depends on the oxygen pressure in a complex manner. Together, these behaviors suggest ...

متن کامل

Silicon nanowire devices

Transport measurements were carried out on 15–35 nm diameter silicon nanowires grown using SiH4 chemical vapor deposition via Au or Zn particle-nucleated vapor-liquid-solid growth at 440 °C. Both Al and Ti/Au contacts to the wires were investigated. The wires, as produced, were essentially intrinsic, although Au nucleated wires exhibited a slightly higher conductance. Thermal treatment of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2015